Without using a calculator, show clearly that 643 is equal to 16 .
2. Evaluate.
(i) $3^{0}+4^{-1}$

3. Work out.
$100^{-\frac{1}{2}}$

END OF QUESTION PAPER

Question		Answer/Indicative content	Marks	Part marks and guidance	
1		$\begin{aligned} & \left(64^{\frac{1}{3}}\right)^{2} \\ & =4^{2}=16 \end{aligned}$	2	B1 for $\left(64^{\frac{1}{3}}\right)^{2}, 4^{2}$ or $\sqrt[3]{4096}$ oe	Condone $\left(64^{2}\right)^{\frac{1}{3}}$ and $(4096)^{\frac{1}{3}}$ for B1
		Total	2		
2	i	$1 \frac{1}{4} \text { oe }$	2	M1 for $\left[3^{0}\right]=1$ or $\left[4^{-1}\right]=\frac{1}{4}$ oe	Examiner's Comments More able candidates correctly identified each term and added them, others were able to identify one term, usually the 3^{0}. Less able candidates thought the negative power gave -4 and some added the 3 and 4 to get 7 and then raised that to the sum of the powers (i.e. ${ }^{-1}$).
	ii	8	2	M1 for $\left[16^{\frac{1}{4}}\right]=\sqrt[4]{16}$ or better	Examiner's Comments Only the more able candidates were able to give the correct answer. A common wrong method 3 was 4 of 16 . Those starting from 16^{3} were unable to get any further.
		Total	4		

Question		Answer/Indicative content	Marks	Part marks and guidance		
3			$\frac{1}{10}$	3	B2 for $\frac{1}{\sqrt{100}}$ or $\sqrt{\frac{1}{100}}$ Or B1 for $\frac{1}{100^{\frac{1}{2}}}$ or 10 final answer or $\sqrt{100}$	

Question		Answer/Indicative content	Marks	Part marks and guidance			
4							

